[K3.4] EPR Spectroscopy	EPR-Spektroskopie	Wahlpflichtmodul im Kernbereich K3	7 - 10 CP (insg.) = 2 Kontaktstudium 4 - 7 SWS / 60 - 105 h	210 - 300 h Selbststudium 150 - 195 h	4 - 7 SWS
Inhalta					

Vorlesung: Quantenmechanische Grundlagen der EPR-Spektroskopie, Spin-Hamilton Operatoren, Magnetische Dipol Wechselwirkungen, Hyperfein-Wechselwirkungen, QM Grundlagen von G- und Nullfeld-Tensoren, Grundlegende Experimente der EPR-Spektroskopie (cw-EPR, puls-EPR, Relaxations-Zeiten, Hyperfein-Spektroskopie, Dipolare Spektroskopie), Bei-spiele von Anwendungen der EPR-Spektroskopie aus den Materialwissenschaften, der Analytik, der Strukturuntersuchungen makromolekularer Systeme, und der EPR-Spektroskopie an Elektronen-Transfer Reaktionen in Katalyse und Photovoltaik.

Praktikum: (optional) Cw-EPR Experimente zur Charakterisierung von organischen Radikalverbindungen, zu Oxidations/Reduktions-Verhalten und -Kinetik, cw-EPR Experimente zur quantitativen Bestimmung von Radikal-Konzentrationen in Lösungen, Einführung in grundlegende Puls-EPR-Experimente (Hahn-Echo, Inversion Recovery Experiment) zur Bestimmung von Relaxationszeiten. Einführung in Simulations-Software zur Bestimmung von Hyperfein-Kopplungen in flüssiger Lösung und G-Tensoren in Festkörper-Proben. Vergleich mit DFT Rechnungen.

Seminar: (optional) Referat über eine aktuelle Forschungspublikation auf dem Gebiet der Magnetischen Resonanz Spektroskopie, Auswahl einer geeigneten Publikation, Literatur-Recherche, Erarbeitung des Themas in Interaktion mit einem der DozentInnen der Magnetischen Resonanz, Vortrag im Seminar, Diskussion der vorgestellten Methode und der daraus gewonnenen Erkenntnisse auch im Kontext der anderen Seminar-Vorträge/Methoden.

Die Lehrveranstaltungen Vorlesung "Theorie der Elektron Paramagnetischen Resonanz Spektroskopie" (Pflicht) sowie eine weitere Veranstaltung Praktikum / Seminar (WPF) müssen besucht werden.

Das Seminar ist Teil der Module "Flüssigkeits NMR-Spektroskopie", "EPR Spektroskopie" und "Festkörper NMR-Spektroskopie". Es kann nur einmal gewertet werden.

Lernergebnisse / Kompetenzziele

Quantenmechanisches Verständnis von Spin-Systemen (Energie-Eigenwerte im Magnetfeld und zeitliche Entwicklung unter/nach kohärenten Anregungspulsen, magnetische Wechselwirkung zwischen ungepaarten Elektronen-Spins und mit Kernspins, Spin-Bahn-Kopplung des magnetischen Moments des ungepaarten Elektrons), Kenntnis der grundlegenden Experimente zur Bestimmung dieser Wechselwirkungen in flüssigen Lösungen und Festkörper-Proben. Qualitatives Verständnis der Spin-Relaxations-Zeiten und der Methoden zur Bestimmung. Einblicke in Anwendungsgebiete der EPR-Spektroskopie von der chemischen und materialwissenschaftlichen Analytik bis zu Anwendungen in der Katalyse, Struktur-Biologie und Photovoltaik.

Teilnahmevoraussetzungen für Modul bzw. für einzelne Lehrveranstaltungen des Moduls

Praktikum und Seminar: Mündliche Prüfung zur Vorlesung "EPR-Spektroskopie"

Empfohlene Voraussetzungen Keine **Organisatorisches** Zuordnung des Moduls (Studiengang / M.Sc. Chemie / FB14 Fachbereich) Verwendbarkeit des Moduls für andere M.Sc. Bioinformatik / FB12; B.Sc. Biophysik, M.Sc. Biophysik, Studiengänge M.Sc. Physik / FB13; M.Sc. Biochemie / FB14;

Häufigkeit des Angebots	Vorlesung: Einmal im Jahr (im Wintersemester)Praktikum: Einmal im Jahr (im Sommersemester)Seminar: Jedes Semester
Dauer des Moduls	2 Semester
Modulbeauftragte / Modulbeauftragter	Prof. T. Prisner

Studiennachweise/ ggf. als Prüfungsvorleistungen	
Teilnahmenachweise	Seminar und Praktikum: Regelmäßige und aktive Teilnahme Praktikum: Bearbeitung der Praktikumsversuche
Leistungsnachweise	Keine
Lehr- / Lernformen	Vorlesung, Praktikum, Seminar
Unterrichts- / Prüfungssprache	Deutsch (auf Wunsch Englisch)
Modulprüfung	Form / Dauer / ggf. Inhalt

Modulprüfung	Form / Dauer / ggf. Inhalt
Modulabschlussprüfung bestehend aus:	
kumulative Modulprüfung bestehend aus:	 Vorlesung: Mündliche Prüfung (30 Min.) WPF (min. 1): Praktikum: Protokoll Seminar: Referat mit Präsentation (20 Min., Handout)
Bildung der Modulnote bei kumulativen Modulprüfungen:	Note als CP-gewichtetes Mittel der abgeschlossenen Modulteilprüfungen
	LV-Form SWS Semester

	LV-Form	SWS	Semester CP			
			1	2	3	4

Pflicht: Theorie der Elektron Paramagnetischen Resonanz Spektroskopie	V	2	4		4	
WPF: Praktikum der Elektron Paramagnetischen Resonanz Spektroskopie	P	3		3		
WPF: Seminar Moderne Anwendungen der Magnetischen Resonanz Spektroskopie	S	2		3		
SUMME		4 - 7		7 - 10		