Importmodul:

[2.23]	Modellierung und	Wahlpflichtmodul	6 CP (insg.) = 180 h	4 SWS	
Introduction to Biomolecular Simulations	Simulation von Biomolekülen		Kontaktstudium 4 SWS / 60 h	Selbststudium 120 h	

Inhalte

<u>Vorlesung</u>: Review of probability theory; Primer in equilibrium statistical mechanics, with review of the necessary classical mechanics and mathematics. Highlights on structures as free energy minimizer; Introduction to stochastic phenomena. Gaussian noise, Brownian motion, diffusion (Fokker-Planck equation); Two state systems: from Ion channels to cooperative binding; Kramer's theory for thermally activated processes. Protein folding; Numerical simulations. Euler algorithm for Brownian motion.

Übung: Zur Vertiefung des Vorlesungsstoffs wird die Vorlesung von einer praktischen Übung und eigenständiger Literaturarbeit begleitet.

Introduction to MD + equilibrium MD; Molecular dynamics. Scales in time and space. Atomistic and coarse-grained MD; Biophysical Interactions, all-atom Force fields and coarse grain force field (Martini); Production code and parallel computing. Introduction to GROMACS; Predicting biophysical properties; Periodic boundary conditions. Ewald's summation for electrostatics; Thermostats & Barostats; Visualizing Biophysical Systems; Molecular simulations of biological systems.

Lernergebnisse / Kompetenzziele

Understand the basic principles of equilibrium and out-of-equilibrium statistical mechanics.

Understand the principles of molecular dynamics simulations and the technical details involved in the setup of MD simulations. Perform basic molecular dynamics simulations of biological systems. Calculate biophysical properties of biomolecules to help the interpretation of the experimental data.

Teilnahmevoraussetzungen für Modul bzw. für einzelne Lehrveranstaltungen des Moduls

Keine

Empfohlene Voraussetzungen

Grundkenntnisse der Thermodynamik und Statistik

Organisatorisches

Importmodul, es gelten die Anmelde- und Rücktrittsfristen der Ordnung des Bachelors/Masters Biophysik. (Die Prüfung erfordert eine online **Anmeldung**, spätestens **sieben Tage** vor dem Prüfungstermin. Bis ein Werktage vor dem Prüfungstermin ist der Rücktritt ohne Angabe von Gründen möglich.)

Zuordnung des Moduls (Studiengang / Fachbereich)	Master Biophysik / FB13							
Verwendbarkeit des Moduls für andere Studiengänge	Master Chemie / FB14, Master Biochemie / FB14							
Häufigkeit des Angebots	Sommersemester							
Dauer des Moduls	1 Semester							
Modulbeauftragte / Modulbeauftragter	Dr. Schwierz-Neumann (Prof. Hummer)							
Studiennachweise/ ggf. als Prüfungsvorleistungen								
Teilnahmenachweise	Übung: Regelmäßige und aktive Teilnahme, Bearbeitung der Übungen							
Leistungsnachweise	Klausur (90Min.)							
Lehr- / Lernformen	Vorlesung, Übung							
Unterrichts- / Prüfungssprache	Englisch							
Modulprüfung	Form / Dauer / ggf. Inhalt							
Modulabschlussprüfung bestehend aus:	Keine							
kumulative Modulprüfung bestehend aus:								
Bildung der Modulnote bei kumulativen Modulprüfungen:								
	LV-Form	LV-Form SWS Sec		mester				
			1	2	3	4		
Modellierung und Simulation von Biomolekülen	V	2		3				
Modellierung und Simulation von Biomolekülen	Ü	2		3				
SUMME		4		6				